
Topics this issue-
Mathematics: algebra of intersecting straight lines;

trigonometry of 30-60-90-degree triangles; vector
addition.

Geology: size, shape and gravity of the Earth; nomenclature of
sedimentary rocks. 

Quantitative literacy: visual display of data; National
Assessment of Educational Progress.

INTRODUCTION

Spreadsheets in Education (eJSiE) is a new electronic
journal that aims "to provide a focus for advances in
understanding the role that spreadsheets can play in
constructivist educational contexts.... (The journal) is a
free facility for authors to publish suitable peer-reviewed
articles and for anyone to view and download articles"
(from their home page: www.sie.bond.edu.au).

In the inaugural issue, the Editors in Chief published
an extensive review (Baker and Sugden, 2003) of how
spreadsheets have been used in education – mostly in
mathematics and statistics, but also physical sciences,
computer science, and economics and operations
research.  The paper contains 205 references.

Baker and Sugden (2003) open their review with a
brief history of spreadsheets in general and refer the
readers to a more-extensive online history by Power
(2004).  Drawing on that source:

• The term "spread sheet" derives from accounting
jargon.  It refers to a large sheet of paper with
columns and rows which spreads or shows costs,
income, taxes, and other data in a way that managers
can examine easily and make decisions.

• VisiCalc was the first electronic spreadsheet.  The
prototype was developed in 1978 by Dan Bricklin, a
student at Harvard Business School, for a case
history project.  Bricklin's early spreadsheet program
consisted of a manipulable matrix of five columns
and 20 rows.  VisiCalc appeared in 1979 and,
according to Baker and Sugden (2003), is said to be
the application, more than any other, that sold
millions of Apple II computers.

• VisiCalc was slow to respond to the introduction of
the IBM PC.  Lotus 1-2-3 was developed in the early
1980s and bought out VisiCalc in 1985.  Lotus 1-2-3
made the spreadsheet into a data presentation
package as well as a calculation tool.  It added
integrated charting, plotting and database
capabilities and introduced cell naming, cell ranges
and macros.

• The market leader today is Microsoft Excel.
Originally written for the 512 Apple Macintosh in
1984-1985, Excel added a graphical interface and
point-and-click mouse capabilities.  According to
Power, "many people bought Apple Macintoshes so
that they could use Bill Gates' Excel spreadsheet
program." Its graphical user interface was easier for
users than the command line interface of PC-DOS

spreadsheets.  Then, in 1987, Microsoft launched its
Windows operating system. Excel was one of the
first application products released for it. When
Windows finally gained wide acceptance with
Version 3.0 in late 1989, Excel was Microsoft's
flagship product. IBM acquired Lotus Development
in 1995.

For more about the history of spreadsheets, Baker
and Sugden (2003) refer us to http://j-walk.com/ss/
history/index.htm, one of the several useful sites by
J-Walk and Associates of Tucson AZ.  J-Walk and
Associates consists of John Walkenbach, author of some
30 books, including Excel for Dummies.

Educators immediately jumped on spreadsheets as
an educational tool.  Baker and Sugden (2003) highlight a
paper by Hsaio (1985) that makes the point that "while
computers are clearly useful tools for education
generally, one of the main disadvantages is having to
program them.  In many cases (at least in 1985), students
had to learn a programming language in order to benefit
from computers."  Spreadsheets, of course, provided a
way around that problem.

To me, the outstanding power of spreadsheets in
education is their usefulness in problem-solving.  Baker
and Sugden (2003) note a 1988 doctoral dissertation on
that very subject (Leon-Argyla, 1988).

I was particularly interested to note that Baker and
Sugden (2003) cited a paper and a book by Dean
Arganbright (1984, 1985) to support their statement that
educators were beginning to discuss their experiences
with spreadsheets as early as 1984.  I met Dr. Arganbright
a couple of years ago at the national convention of the
National Council of Teachers of Mathematics, where he
gave a one-hour session to a standing-room-only
audience on using spreadsheets as a teaching tool.  After
that, I promptly went to the Exhibits hall and ordered his
new book that was in press at the time and is available
now (Neuwirth and Arganbright, 2004).  I thoroughly
recommend this book, as well as the rich Website of his
coauthor Erich Neuwirth (http://sunsite.unvie.ac.at
/Sunsite/).

THE RANGE CHART

One of the themes of Arganbright's presentation at the
NCTM convention was how to manipulate Excel to draw
graphs that it wasn't designed to do.  The charts of
spreadsheet programs are designed with the business
user in mind – reflecting, of course, the origin of the
spreadsheet concept itself.  The software, however, is
being used now by a much broader community, and
many of us need more than the basic bar, line, pie, and
XY-scatter graphs.

I have forgotten what precisely it was that
Arganbright was talking about when the lightbulb came
on, but I do remember thinking – Hey, that's how I can do
a range chart!  The key idea is that one can plot many
graphs by simply skipping a row.  By skipping a row, the
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graphing program breaks the continuity of the line so
that a single graph appears as many.

As an illustration, consider the three principals in the
isostasy story involving the Great Trigonometric Survey
of India (see CG 28, "Archimedean slices and the isostatic
sphere," last issue): Sir George Everest (1790-1866),
Archdeacon J. H. Pratt (1800-1867) and Sir George
Biddell Airy (1801-1892).  Add to them, C. E. Dutton
(1841-1912), the prominent American geologist and
geophysicist who coined the word "isostasy."  How
would these four life spans plot on a range chart?

Figure 1 shows a spreadsheet with an answer.  The
plot is an XY-scatter plot of Column D against Column C.
The graph is actually a single plot of the eight points
extending from (1,1790) to (4, 1912).  Without skipping
the three rows – after (1,1866), (2,1867), and (3, 1892) – the
plot would be a zig-zag continuous line.  By skipping the
three rows, the plot appears as four separate vertical
lines.  Clearly one can have as many ranges as one wishes
with a graph such as this.

Or, one can show the ranges horizontally.  Figure 2
shows the life spans of the four  characters of the isostasy
story in Figure 1, together with others in the larger
context – the post-Eratosthenes story of the size and
shape of the Earth (see Box).  The graph is an XY-scatter
plot of Columns D and E against Column C.  The scale is
reversed on the vertical axis.  The numbers are staggered
in Columns D and E to make the line breaks.
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Figure 1. Spreadsheet plotting a range chart of four
players in the story of isostasy.

Size, Shape and Gravity of the Earth, 1670-1870.

The Great Trigonometric Survey of India mapped the
78th E meridian for a distance of 1200 km. This monumental
project established once and for all that the curvature of the
Earth decreases northward (Northern Hemisphere). The
Earth is an oblate spheroid as predicted by Newton. This
great achievement marked the end of one of the great stories
in the history of geology – the size, shape, and gravity of the
Earth in the Age of Newton. Following are the roles of some of
the players in the story (Figure 2), from biographical sketches
in Asimov (1982).

Jean Picard. French astronomer. A charter member of the
French Academy of Sciences and one of the founders of the
Paris Observatory. First modern measurement of the
circumference of the Earth (1670). Recruited Cassini for Paris
Observatory.

Giovanni Domenico Cassini. Italian-French astronomer.
Among many other achievements at Paris Observatory
determined the size of the solar system using method of
parallax to measure distance to Mars. Once one distance was
known all other distances could be calculated from Kepler's
Third Law. Method of parallax used simultaneous
observation of Mars at Paris (Cassini) and French Guiana
(Richer) near Equator.

Jean Richer. French astronomer, military engineer. Led
expedition to Cayenne in French Guiana to determine
distance to Mars (1671). Found that a pendulum clock beats
slower there, near the equator (2 ½ min per day). Gravity
weaker, and hence surface is farther from the center of the
Earth.

Isaac Newton. English scientist and mathematician. Law
of Gravitation in Principia Mathematica (1687). Concluded that
effect of gravitation coupled with Earth's rotation would give
Earth an elliptical cross section. Curvature would be greater
at Equator than poles. 

Pierre Louis Maupertuis. French mathematician. Headed
expedition (beginning in 1736) to Lapland in far north of
Sweden to determine curvature of the Earth there.

Charles La Condamine. French geographer. Headed
expedition (beginning in 1735) to Peru at Equator to
determine curvature of the Earth there. 

Pierre Bouguer. French mathematician. Member of La
Condamine's expedition.

Alexis Claude Clairaut. French mathematician.
Mathematical prodigy, writing papers at age 13, and
publishing a book at 18. Member of Maupertuis's expedition.
Extended Newton's analysis of oblate spheroid, producing
among other things the equation for gravity at sea level as
function of latitude. 

One can say that the 200-year (1670-1870) story of the size
and shape of the Earth consists of three chapters. The first
involves Picard, Cassini and Richer. The second is the pair of 
expeditions to Lapland and Peru. The third is the Great
Trigonometric Survey. Pierre Bouguer provides a
geophysical link between the second and third chapters.  His
survey work at sea level took the gravitational attraction of
the Andes into account for its effect on the plumb bob. Everest
found that even with that correction for the nearby
Himalayas, there was still a discrepancy with the
astronomical determinations of location. From this
discrepancy, Pratt and Airy inferred that the Bouguer
correction overcorrected – that there is less mass in (and/or
beneath) the nearby mountains than their height would
suggest.

Box 1. Brief histories of major players in the story of 
isostasy.



SPREADSHEETS IN GEOSCIENCE
EDUCATION

Beth Fratesi has compiled an annotated bibliography of
papers in the Journal of Geoscience Education that have
used spreadsheets for calculating, modeling, plotting,
and manipulating data for the purpose of teaching
(Fratesi and Vacher, 2004).  She found 38 papers through
2003.  They began in 1986, in the pre-Windows era.

Not counting a paper on using spreadsheets for
course management (Loudon, 1986), the first three
papers in JGE are Manche and Lakatos (1986), Ousey
(1986) and Holm (1988).  These  three papers show how
geologists were quick to recognize the versatility and
range of spreadsheets for education:

• Manche and Lakatos (1986) used spreadsheets in a
lab exercise where students calculate the age of obsidian
samples from measurements of hydration rims as seen in
thin section.

• Ousey (1986) demonstrated how spreadsheets can be
used for two-dimensional finite-difference modeling of
steady-state groundwater flow. This paper is a classic, in
my opinion, and can be usefully considered as the
educational member of a pair of papers on the subject.
The more-technical member of the pair is a computer
note by Olsthoorn (1985), which argues the values of
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Figure 2. Spreadsheet plotting a range chart of the players in the broader story of the size, shape and gravity
of the Earth. 

Figure 3.  Two early triangular plots defining some
venerable names of sedimentary rocks. Upper
triangle: mixtures of limestone, sandstone and shale
by Pirsson and Schuchert (1920) as published by
Pettijohn (1957, Fig. 6). Lower triangle: subdivision
of sandstones into orthoquartzite, graywackes and
arkoses by Krynine (1948).



modeling a flow system with a spreadsheet as
opposed to pulling a black-box model off the shelf. It
is noteworthy that Olsthoorn (1985) cites the book by 
Arganbright as a crucial reference for its treatment of
mathematically similar heat-flow problems. The
current book (Neuwirth and Arganbright, 2004)
takes the spreadsheet modeling of heat flow into
transient problems. 

• Holm (1988) used spreadsheets for a plotting
problem. It was not an ordinary data-manipulation,
data-plotting problem. The question addressed by
Holm (1988) was, "How can we get this technology to
make a triangular plot?" I will consider that question
in more detail in the next section.

From those beginnings, spreadsheets in the JGE have
gone on to cover a wide diversity of topics, including
such things as the shape of glaciated valleys (Harbor and
Keattch, 1995), basin analysis (Larrieu, 1995), CIPW
norms (Malisetty, 1992), Milankovitch cycles (Berger,
1997), the size of the Milky Way (Shea, 1993), and heat
loss from a building (Frey et al., 2003). For more, visit the
Spreadsheets in Education site and look up Fratesi and
Vacher (2004) in issue 3 of the new journal. 

TRIANGULAR PLOTS

Triangular plots are ubiquitous in geology. They arise
whenever one wishes to show combinations or mixtures
of three end members.  Anyone who has learned about
sedimentary rocks in the last 50 years, for example, has
run into triangular plots used for classification and
nomenclature. They go back more than 80 years to the
time of L. V. Pirsson (1860-1919), a contemporary of
Dutton. Writing in 1951, Krumbein and Sloss noted that
plots with the three "end-member sediments, sandstone,
shale and limestone, are familiar to all students. Such
triangles were originally developed by Pirrson and
Schuchert (1920). The relations of intermediate rock
types to the end members are clearly brought out by the
triangle" (Krumbein and Sloss, 1951, p. 118). The upper
triangle of Figure 3 shows Pirsson's classic display of the
basic nomenclature.

Triangular plots have been momentous for thinking
about sandstones. As summed up by Pettijohn et al.
(1972, p. 154), "The major impetus to sandstone
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Figure 4. Contours on a triangular plot.
Figure 5. Location of a sample with composition {a1,
a2, a3}.

Figure 6. Spreadsheet producing a triangular plot
using equations from Holm (1988). 



classification came from the proposals of P. D. Krynine in
the years 1940-1948 and F. J. Pettijohn from 1943-1957....
It is clear that all of the other schemes [of sandstone
classification that have been proposed more recently]
derive from one or the other or both of them. A major
concept used – borrowed from igneous petrology – was
the composition triangle for representation of modal
analyses and the blocking out of fields within that
triangle." The lower triangle of Figure 3 shows the classic
display from Krynine (1948). 

Figure 4 shows the basic quantitative layout of a
triangular plot. A1, A2, and A3 are the three end
members, and they occupy the three vertices of an
equilateral triangle. Locations along the three legs of the
triangle show combinations of two of the three end
members; for example, mixtures consisting entirely of A1
and A3 plot along the leg connecting those two end
members. Locations within the triangle contain non-zero
percentages of each of the three end members, as shown
by the contours (contour interval = 20%). The dark circle
marks the location of a mixture of which 30% consists of
A1, 10% consists of A2, and 60% consists of A3. Note that
this sample plots midway between the 20% and 40%
contours of A1, close (10%) to the A1A3 leg, and fairly
close (60%) to the A3 vertex.

How can we make a spreadsheet produce a
triangular plot? I will review the way Holm (1988) did it,
and then I will present two other, more mathematically
interesting solutions. This problem of constructing a
triangular plot on an Excel XY-scatter chart is a nice little
puzzle – one that illustrates some useful mathematics. 

Before we start, though, we need some terminology.
We let A1, A2, and A3 represent the components in the
mixture (i.e., corresponding to names like "feldspar").
We let a1, a2, and a3 be the corresponding percentages (see
Figure 5). The set of percentages is denoted by {a1, a2, a3}.
The braces distinguish the percentages from the
xy-coordinates, which are represented by parentheses (x,
y).

Holm's solution - Figure 6 shows the approach taken by
Holm (1988). It starts by stipulating that the length of the
A2A3 base is 100 units and that the height of the triangle
is also 100 units. So right away, we see that this triangle is
not equilateral; the A1A2 and A1A3 legs are 112 units
(i.e., SQRT(100^2 + 50^2). This is not a problem,
however, because, after we are done, we can make the
triangle be equilateral by shrinking the height of the
graph vertically by dragging on one of the handles of its
enclosing box.

With the assignment of lengths, the xy-coordinates of
the three vertices are nice round numbers: A1, with
composition {100, 0, 0}, is at (50, 100); A2, with
composition {0, 100, 0}, is at (0,0); and A3, with
composition {0, 0, 100}, is at (100, 0). The question is how
do we find the xy-coordinates of the point {30, 10, 60},
where a1 = 30%, a2 = 10%, and a3 = 60%.

The y-coordinate is easy: 

y = a1 (1)

The x-coordinate is not difficult: it follows from the
realization that the width (w) of the triangle is
proportional to the vertical distance down from the A1
vertex. That is, if the width of the A2A3 base (where a1 =
0) is 100 units, and if the width at the A1 vertex (where a1

= 100%) is zero, then the width at the intermediate
location where a1 = 30%, which is 70 units down from A1,

must be 70 units (by similar triangles). Because a3 = 60%,
the position of {30, 10, 60} must be 60/70 of the distance
along that width. But because the width itself is 70 units,
{30, 10, 60} must be at a distance of 60 units from the left
edge of the width (i.e., 60/70*70). Further, because the
total width is 70 units, meaning that the half-width must
be 35, the point {30, 10, 60} must be 25 (or 60 − 35) units
past the half-width position. Finally, the half-width
position needs to line up with x = 50 units. So, if {30, 10,
60} is 25 units past x = 50 units, the x-coordinate of {30, 10,
60} must be 75 (or 50 + 25) units.

Using symbols to go through the same reasoning, the
width (w) is 

w = 100 - a1. (2)

Remembering that a1, a2, and a3 must sum to 100%, the
half-width is

w
a a

=
+

2 3

2
. (3)

The distance (∆x) of {a1, a2, a3} past the half-width position
is

∆x a
a a

= −
+

3

2 3

2
(4)

With the midline occurring along x = 50, 

x a
a a

= + −
+

50
23

2 3
(5)

Equations 1 and 5 are the conversion equations and are
equivalent to the equations in Holm (1988, p. 157). For
the spreadsheet in Figure 6, the relevant cell equations
are:

For Cell E14: = 50+D14-((C14+D14)/2) (6a)
For Cell F14: = B14 (6b)

from Equations 5 and 1, respectively.
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Figure 7.  Locating {a1, a2, a3} as the intersection of
the a1- and a2-contours.



Intersecting lines - If you were given a sheet of
triangular graph paper with the contours laid out on it
like Figure 4, how would you locate the point {30, 10, 60}?
Chances are you would locate two of the contours and
find their intersection. For example, referring to Figure 7,
Line 1 is the contour of a1 = 30%, indicating that 30% of
the mixture consists of A1. Line 2 is the contour of a2 =
10%, indicating that 10% of the mixture consists of A2.
The two lines intersect at {30, 10, 60}. The a3 = 60% is
automatic because a1, a2 and a3 sum to 100.

The same strategy can be used to find the
xy-coordinates. All one has to remember is a little algebra
of straight lines and a little trigonometry.  Recall, a
straight line can be written as:

y = mx +by, (7)

where m is the slope and by is the y-intercept (i.e., where x
= 0). Rearranging Equation 7,

x
y

m

b

m

y

= − , (8)

which means that the x-intercept (bx, where y = 0) is
−by/m. Therefore, one can easily calculate the y-intercept
if one knows the x-intercept and vice versa:

by = mbx (9a)

b
b

mx

y
=− . (9b)

That's all the algebra you need.
The trigonometry that you need is to be able to

calculate the length of the legs of a 30-60-90 degree
triangle, and the slope of a line that makes an angle of 60°
from the horizontal. 

The short leg of a 30-60-90 triangle is c*cos(π/3),
where c is the length of the hypotenuse, and the angle is
given in radians because Excel uses radians ( π/3 radians
= 60° ). Similarly, the long leg of a 30-60-90 triangle is
c*sin ( π/3). For the special case where c = 100 units (the
length of the legs of the outline triangle), the short leg is

50 units and the long leg is 86.6 units. So, immediately we
know the Cartesian coordinates of the three vertices:

A1: (0, 0)
A2: (50, 86.6)
A3: (100, 0).

As for the slopes, the slope of a line with a positive
rotation of 60° from the x-axis (i.e., the A2A1 leg of Figure
7) is tan( π/3) or 1.732. The slope of a line with a negative
rotation of 60° from the x-axis (the A1A3 leg) is tan(−π
/3), or −1.732.

So, with that, we are ready to find the (x,y)
corresponding to {a1, a2, a3}.

First consider Line 1. The slope is zero. The distance
along the A2A1 leg is a1, and so the height of the line
above the A2A3 is 0.866a1 (or a1*sin( π/3)). This height is
the same as the y-intercept, because the line is horizontal.
Therefore, Line 1 is given by 

y = 0.866a1 (10)

Now consider Line 2. The slope is −1.732. The
x-intercept is 100 a2. From Equation 9, the y-intercept is
1.732(100−a2). Therefore, Line 2 is given by

y = − 1.732x + 1.732(100−a2) (11)

Combining Equations 10 and 11 and solving for x:

x a
a

= − −100
22

1
. (12)

Equations 10 and 12 are the solution for (x,y).

Vectors - Imagine that the triangle and its contours of
Figure 4 were laid out on the ground, with the A2A3 base
running due west-east. Imagine that each of the legs is
100 m. Imagine that you are standing at the A2 vertex
and told to walk to {30, 10, 60} with the stipulation that
you could walk only in directions parallel to the legs.
That is, you could walk only N30E and S30W (parallel to
A2A1); N30W and S30E (parallel to A3A1); or N90E and
N90W (parallel to A2A3). How would you get there?

If you don't care how many miles you might walk,
there is an infinitude of ways of walking from {0, 100, 0}
to {30, 10, 60}. Figure 8 shows one of them (not the
shortest, but a good one to look at the mathematics): you
walk from {0, 100, 0} in the direction of N30E to {90, 10, 0},
and then turn 120° clockwise and walk S30E from {90, 10,
0} to {30, 10, 60}. In the process you walk the two vectors
shown in Figure 8.

How far have you walked? Looking at Figure 8, you
can easily convince yourself that the length of the Vector
1 (along the contour of a3 = 0) is 90 m, and the length of
Vector 2 (along the contour of a2 = 10) is 60 m. So, you
have walked 150 m. (How many shorter routes are there?
What is the shortest route?)

The length of the walk is not the point. The point is
that we can use these two vectors to work out the
xy-coordinates of {30, 10, 60}. It is a simple problem of
vector addition.

First, we need to remember that the mathematics of
vectors doesn't ordinarily use bearings and azimuths to
stipulate angles. It uses the angle α measured clockwise
from the x-axis. Thus for Vector 1, with a bearing of N30E
(and azimuth 30° ), α = 60° . For Vector 2, with a bearing

Vacher - Computational Geology 29 329

Figure 8. Locating {a1, a2, a3} as the sum of two vectors. The
first vector follows the A2A1 leg to its intersection with the
a2-contour, and the second contour follows the a2-contour to
its intersection with the a1- and a3-contours.



of S30E (and azimuth 150° ), α = −60° (or 300° ). So, our
problem is to find Vector 1, with magnitude 90 m and
direction 60° , plus Vector 2, with magnitude 60 m and
direction −60° .

Second, we need to convert the vectors from their
magnitude-direction form to their x- and y-components
form. In general (see CG-4, "Mapping with vectors" JGE,
v. 47, p. 64-70, Jan, 1999),

V i j= +V Vx y (13)

Where V is a general vector; Vx and Vy are its x- and
y-components; and i and j are unit vectors in the x- and
y-directions, respectively. The components are given by

Vx = V cosα (14a)

Vy = V sinα (14b)

Where V is the magnitude of V. So, for Vector 1, the x-
and y-components are 90*cos(60) = 45 m and 60*sin(60) =
74.94 m, respectively; for Vector 2, the x- and
y-components are 60*cos(−60) = 30 and 60*sin(−60) =
−51.96 m. Then, the two vectors are:

V i j1 45 74 94= + . (15a)

V i j
2

30 51 96= − . (15b)

Equation 15a means that the effect of walking along
Vector 1 could have been achieved by walking 45 m east
and then 74.94 m north. Similarly, Equation 15b means
that Vector 2 could have been achieved by walking 30 m
east and then 51.96 m south.

The third step is to add Equations 15a and 15b. This
says that to get to the end of Vector 1 plus Vector 2, you
could have walked the 45 m east of Vector 1 plus the 30 m
east of Vector 2, and then the 74.94 m north of Vector 1
plus the 51.96 m south of Vector 2. This would leave you
75 m east and 22.98 m north of where you started.
Symbolically, such vector addition can stated as:

V W i j+ = + + +( ) ( )V W V Wx x y y (16)

where Vand W are general vectors.
Because the route took you to 75 m east and 22.98 m

north of your starting point at (0,0), the coordinates of
{30, 10, 60} are (75, 22.98), which is our answer. 

More generally, with {a1, a2, a3} as our general
composition,

V i j1 2 2
100 3 100 3= − + −( ) cos( / ) ( ) sin( / )a aπ π (17a)

V i j2 3 33 3= − + −a acos( / ) sin( / )π π (17b)

Then, from Equation 16, and the facts that cos(π/3) =
cos( −π/3) = 0.5, sin(−π/3) = −0.866, and sin(−π/3) =
−0.866, Equations 17a and 17b produce

V V i j1 2 2 3 2 30 5 100 0 866 100+ = − + + − −. ( ) . ( )a a a a . (18)

Equation 18 means that the xy-coordinates
corresponding to {a1, a2, a3} are

x = 0.5(100 - a2 + a3) (19a)

y = 0866(100 - a2 - a3). (19b)

One can easily show that Equations 19a and 12 are
equivalent, and that Equations 19b and 10 are equivalent,
because a1 + a2 + a3 = 100. 

One can use either set of equations to lay out a
triangular plot with contours. The layout I used for
Figure 4 is in Figure 9. 

QUANTITATIVE LITERACY

Peer Review is the quarterly journal of the Association of
American Colleges and Universities. The Summer 2004
issue is devoted to Quantitative Literacy (http://www.
aacu-edu.org/peerreview/pr-su04/pr-su04contents.cf
m). The opening statement from the Editor contains the
following:

"Cit i zens are reg u larly con fronted with a diz zy-
ing ar ray of nu mer i cal in for ma tion. On a given
day, for ex am ple, the me dia may re port changes
in the con sumer price in dex or fed eral in ter est
rates, re sults of clin i cal tri als, sta tis tics from an
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Figure 9. Spreadsheet producing the graph in Figure
4.



ed u ca tional as sess ment of lo cal schools, find ings
from a study of the long-term health ef fects of a
widely used prod uct; the list could go on al most
end lessly. More over, near- om ni pres ent com put-
ers gen er ate – and the Internet makes avail able – a
stag ger ing amount of in for ma tion, much of it
quan ti ta tive.

"For a quan ti ta tively lit er ate cit i zen, ac cess to this
wealth of in for ma tion is po ten tially em pow er ing.
The re verse also is true, how ever. A quan ti ta-
tively il lit er ate cit i zen – one who is un able to eval-
u ate sta tis ti cal ar gu ments com pe tently, for
ex am ple, or in ca pa ble of grasp ing the po ten tial
im pli ca tions of data trends – may be eas ily mys ti-
fied. As Lynn Steen has put it, "an innumerate cit-
i zen to day is as vul ner a ble as the il lit er ate peas ant
of Gutenberg's time."

As the name implies, quantitative literacy
(numeracy) turns on successful communication of
quantitative information. Geologists, being a visual lot,
are well aware of the visual communication of
information, and so it is no surprise to us that a key
ingredient of quantitative literacy is an active stance
toward visualization of data. It will not surprise
geologists to know that faculty-development workshops
and institutes on quantitative literacy emphasize the
visual representation of data and that courses on
quantitative literacy emphasize proactive reading and
interpreting graphs, including maps. 

The extraordinary The Visual Display of Quantitative
Information (Tufte, 1983) initiated a succession of
stunning books on effective vs. ineffective graphical
communication (Tufte, 1990, 1997; Wainer, 1997). Visual
Revelations (Wainer, 1997) is particularly relevant to this
column because it contains a chapter on trilinear plots
("triangular plots" to geologists). According to Wainer
(1997, p. 112):

"In the re cent past I have seen re peat edly a par tic-
u lar data struc ture in the news me dia. In all cases
they have been dis played in a way that hin dered
com pre hen sion. The data struc ture I am re fer ring
to is tech ni cally termed a three-dimensional prob-
a bil ity sim plex. Spe cifically they are a se ries of
three num ber sets, each of which sums to one.
Such data show up in eco nom ics (per cent age of
each coun try's econ omy in ag ri cul ture, in man u-
fac tur ing, and in ser vice), in sports (per cent age of
each foot ball team's of fense due to rush ing, pass -
ing, and kick off re turns), in pol i tics (per cent age of
elec tor ate in each state for Doe, Clinton and
Perot), and even in the bud gets that we sub mit for
sup port (per cent age of sal ary, ben e fits, and over -
head).

"These data are usu ally pre sented as a ta ble or as a
se quence of pie charts with three sec tors in each
pie. With a mod est-sized data set a well-designed
ta ble can some times be help ful. Any help ob-
tained from a set of pies is al most surely an ac ci-
dent

"The trilinear plot is a too-seldom-used display
for this particular kind of data.."

Wainer (1997) includes a couple of examples. One is
the 1992 Grade-8 mathematics results of the National
Assessment of Educational Progress (NAEP) survey of
public schools – widely known as "The Nation's Report
Card." Wainer focuses on a table listing the state-by-state
percentages in four categories of achievement: advanced;
proficient; basic; below basic. He combines advanced
and proficient, because (alas) advanced is only a couple
of percentage points. Thus he comes up with three
categories of percentages. His triangular plot (p. 116)
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Figure 10. Triangular plot showing 1992-2003
improvement of Grade-8 mathematics results on the
NAEP survey for California, Florida, Maine,
Minnesota, Mississippi, Pennsylvania, and Texas.
Data from http://nces.ed.gov/nationsreportcard/.

Figure 11. Spreadsheet producing the graph in Figure
10.



spreads out the states along a band running from near
the Sub-basic vertex to the area between the Basic vertex
and the triangle's centroid.  In a separate diagram, he
stratifies the states-wise data with two extreme
subgroups: students whose parents were college
graduates, and students whose parents did not graduate
high school. The plot is striking. He makes his point that
this kind of display leaves pie charts far behind. 

Figure 10 is a variation on Wainer's NAEP triangular
plot. The arrows show the change from the 1992 results
to the 2003 results for seven selected states. Figure 11 is
the spreadsheet that produced the graph. The crucial cell
equations are the same as those in Figure 9. The strategy
of making the short lines showing the changes is like the
strategy of making the ranges on the range chart:
segment one or two long, zig-zag lines into shorter
straight-line pieces. 

CONCLUDING REMARKS

One approach to quantitative literacy is to take
quantitative literacy across the curriculum. The idea is to
infuse elementary quantitative interpretation at
appropriate places in courses outside the mathematics
curriculum. The intention is that students become used
to dealing proactively with quantitative information in
context. Geology courses, with their ubiquitous visual
display of quantitative data, can provide a rich
opportunity. It could be that we only need to pause and
point out some of the lessons contained in the books by
Tufte and Wainer.

To underscore the suitability of geology courses for
enhancing quantitative literacy, consider this from the
last paragraph in Wainer's chapter on trilinear plots
(Wainer, 1997, p. 118):

“Despite their frequent suitability, trilinear plots
are rarely seen in the media. Why? ... Pie charts
are used despite their flaws because they are a
conventional and obvious metaphor. Trilinear
plots ..., despite their obvious appropriateness in
these applications, ... take some getting used to. It
was my intention with the two examples and
their variations shown here to provide the reader
with some experience, and hence comfort, with
the format. By my doing so, perhaps others will
produce evocative applications of this somewhat
specialized format. Thus can we expand the
public consciousness of our graphical repertoire
and continue to increase the comprehensibility of
information.

So too can geology courses that interact with their
graphs. For interaction, nothing beats spreadsheets.
Imagine spreadsheet-interactive geology courses whose
students include future journalists. Triangular plots
represent only one example of graphic displays that are
no longer novel or innovative in the context of geology,
but could enhance communication about quantitative
information more generally. The reading public only
needs to become comfortable with them. Geologists need
only to disseminate them.
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